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cation, the proposed imprinting test has demonstrated 

much improved power in detecting gene-environment in-

teractions than that of a test assuming the Mendelian domi-

nant model when the true underlying genetic model is im-

printing.  Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Genomic imprinting is a form of epigenetic regulation 
in mammals in which the same allele of a gene is expressed 
differently according to parental origin of the allele  [1] . 
Imprinted genes are thought to influence the develop-
ment of the placenta, fetal and infant growth through af-
fecting the maternal allocation of resources and the trans-
fer of nutrients to the fetus and the newborn from the 
mother  [1, 2] . Aberrant imprinting disturbs development 
and causes various preclinical and disease syndromes. 
Thus, the study of imprinting effects provides new in-
sights into epigenetic gene modifications during develop-
ment. A census of imprinted genes in 2005 suggested that 
approximately 41 genes in 16 chromo somal regions are 
imprinted in humans [ 3, 4 , see also http://www.gene-
names.org/data/hgnc_data.php?hgnc_id=5379]. At pres-
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 Abstract 

 Genomic imprinting is a form of epigenetic regulation in 

mammals in which the same allele of a gene is expressed dif-

ferently depending on the parental origin of the allele. Tra-

ditionally, the detection of imprinted genes that affect com-

plex diseases has been focused on linkage designs with ped-

igrees or case-parent designs with case-parent trios. In the 

past two decades, the birth cohort design with mother-off-

spring pairs has been applied to understand better the ef-

fect of environmental influences during pregnancy and be-

ginning of life on the growth and development of children. 

No work has been done on the detection of imprinted genes 

using birth cohort designs. Moreover, although the impor-

tance of imprinting has been well recognized, no study has 

looked at how environmental exposures modify the effects 

of imprinted genes. In this study, we show that the proposed 

imprinting test using the birth cohort design with mother-

offspring pairs is an efficient test for testing the interactions 

between imprinted genes and environmental exposures. 

Through extensive simulation studies and a real data appli-
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ent, approximately 60 imprinted genes are known in hu-
mans, but there may be up to 1,000 imprinted genes  [5] . A 
large number of complex diseases are known to have par-
ent-of-origin effects, including asthma, autism, type I and 
type II diabetes, Alzheimer disease and schizophrenia  [5] . 
More recently, Kong et al.  [6]  identified 5 single nucleotide 
polymorphisms (SNPs) to have parental-origin-specific 
associations with breast cancer, basal-cell carcinoma and 
type II diabetes using 38,167 Icelanders.

  Traditionally, the detection of imprinted genes in 
complex diseases has been focused on linkage designs 
with pedigrees or case-parent designs with case-parent 
trios when parent-of-origin information is available in 
offspring  [7–15] . To improve the health and well-being of 
children and to understand the effect of environmental 
influences during pregnancy and beginning of life on the 
growth and development of children, a number of longi-
tudinal birth cohort designs with mother-offspring pairs 
have been applied in the past two decades. In most birth 
cohort designs, pregnant women are recruited into the 
study and environmental exposures during pregnancy 
are collected. Newborns are followed up after birth until 
school age for health and development information. Chil-
dren’s environmental exposures at the beginning of life 
also are collected. Usually only mothers and offspring are 
collected in birth cohort designs without the father, pro-
viding partial parent-of-origin information. No work has 
been done on the detection of main genetic imprinted ef-
fects using birth cohort designs with mother-offspring 
pairs. Most recently, Ainsworth et al.  [16]  investigated 
imprinting effects using affected offspring/control off-
spring and their mothers.

  Although there is still controversy about the nature of 
the primary imprints, it was found that DNA methylation 
was a key molecular mechanism of imprinting. DNA 
methylation marks the imprinted genes differently in egg 
and sperm, and inheritance of these epigenetic marks 
may lead to differential gene expression  [17–19] . Although 
the importance of genetic imprinting has been well rec-
ognized, no study to date has looked at how environmen-
tal exposures modify the effects of imprinted genes. This 
is especially important as the environment is known to 
play a key role in risks of almost all complex diseases 
through its profound role in determining the epigenetic 
alterations occurring in an individual’s genome. More-
over, environmentally induced modifications to the epi-
genome that occur during the epigenetic reprogramming 
in early development tend to affect fetal growth and be-
havior after birth and are likely to have long-term health 
consequences  [2, 20, 21] .

  In this study, we show that the birth cohort design 
with mother-offspring pairs is an efficient design for test-
ing the interactions between imprinted genes and envi-
ronmental exposures. We developed a new method that 
uses a newly proposed maternal and paternal imprinting 
coding to detect how prenatal environmental exposures 
or environmental exposures at beginning of life modify 
the effect of imprinted genes on child illness, such as 
asthma, using birth cohort designs with mother-off-
spring pairs. We denote such interactions between im-
printed genes and environmental exposures as igene-
environment interactions. We proposed to choose the op-
timal genetic models by cross-validation procedures that 
minimize the prediction errors. Through extensive simu-
lation studies and an application on childhood asthma 
using a birth cohort study being conducted by the Co-
lumbia Center for Children’s Environmental Health 
(CCCEH) in New York City, we demonstrated the feasi-
bility and power of the proposed imprinting tests using 
mother-offspring pairs. Although we concentrated on 
the interactions between imprinted genes and environ-
mental exposures, the proposed method is readily ap-
plied to detect main effects of imprinted genes or interac-
tions between imprinted genes with mother-offspring 
pairs.

  Material and Methods 

 We assume a bi-allelic marker with a high-risk allele  A  and a 
low-risk allele  a , that have frequencies  p  and 1 –  p , respectively. 
Here the high-risk allele is the minor allele in the cohort. Assum-
ing Hardy-Weinberg equilibrium (HWE) and random mating, 
the joint distribution of the 7 possible mother-offspring genotype 
combinations are displayed in  table 1 . Let A m  and a m  be the two 
alleles inherited from the mother, and A f  and a f  be the two alleles 
inherited from the father. There are 4 possible imprinted geno-
types in the offspring, A m A f , A m a f , A f a m , and a m a f . Without pa-
ternal genotype information, the parent-of-origin information of 
each offspring genotype can still be fully determined except for 
cases when both mother and offspring genotypes are heterozy-
gous ( table 2 ). In this case, imprinted genotypes in the offspring 
can be either A m a f  or A f a m . Given that both mother and offspring 
genotypes are heterozygous, we can derive the probability of the 
father having one type of genotype as follows:

  Pr( G  p  =  AA   �   G  m    =  Aa ,  G  c  =  Aa ) =  p  2 ,
  Pr( G  p  =  Aa   �   G  m    =  Aa ,  G  c  =  Aa ) = 2 p (1 –  p ),
  Pr( G  p  =  aa   �   G  m    =  Aa ,  G  c  =  Aa ) = (1 –  p ) 2 .

  These happen to be the genotype frequencies in the general popu-
lation following HWE. Note that in designs with case-parent tri-
os, trios with both parents and the diseased child heterozygous 
are uninformative in terms of parent-of-origin information and 
are usually omitted from the analysis  [7] . As a comparison,  table 2  
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also displays offspring parent-of-origin information when both 
maternal and paternal genotypes are available. With mother-off-
spring pairs, the offspring parent-of-origin information is am-
biguous when both mother and offspring genotypes are heterozy-
gous. We deal with such mother-offspring pairs with ambiguous 
parent-of-offspring information in two ways and will compare 
their performance. In the first way to deal with ambiguous moth-
er-offspring pairs, we partially recover parent-of-origin informa-
tion by assigning each pair pseudo-paternal genotype AA with a 
probability  p  2 , and pseudo-paternal genotype aa with a probabil-
ity (1 –  p ) 2 , and by omitting such mother-offspring pairs with 
probability 2 p (1 –  p ). With pseudo-paternal genotypes AA and aa 
assigned for one pair, the parent-of-origin information of hetero-
zygous offspring with a heterozygous mother can be obtained 
from  table 2 b. In the second way to deal with ambiguous mother-
offspring pairs, we simply omit such pairs. We note the possibili-
ties of misclassifying imprinting information with partially re-
covered parent-of-origin information and will compare the per-
formance of the two methods in terms of type I error rates and 
power. 

 We propose a maternal imprinting coding and a paternal im-
printing coding for offspring genotype to capture the maternal or 
paternal imprinting effect ( table 3 ). Maternal imprinting refers to 
the situation when the allele of a particular gene inherited from 
the mother is transcriptionally silent while the paternally inher-
ited allele is active. Paternal imprinting is the opposite – when the 
paternally inherited allele is silenced while the maternally inher-
ited allele is active. Thus, when a genetic locus is a maternally im-
printed locus, we code offspring imprinted genotypes ‘A m A f ’ and 
‘A f a m ’ as 1, and offspring imprinted genotypes ‘A m a f ’ and ‘a m a f ’ as 
0. When a genetic locus is a paternally imprinted locus, we code 
offspring imprinted genotypes ‘A m A f ’ and ‘A m a f ’ as 1, and off-
spring imprinted genotypes ‘A f a m ’ and ‘a m a f ’ as 0. With this ma-
ternal/paternal imprinting coding, we can apply the following lo-
gistic model on offspring disease status to detect interactions be-
tween imprinted genes and environment, i.e. igene-environment 
interactions:

  logit( D  o i   = 1  �   G  o i  ,  E  i ) =  �  0  +  �  E E i  + � G   i   
 o 
  G  i  o i   

                    +  � G   i   
 o 
    !   E  E i  !  G i  o i   ,  i  = 1, ...,  n , 

 where  E  is the binary prenatal or postnatal environmental expo-
sure status of the offspring;  G i  o i    is offspring imprinting coding at 
the genetic locus of interest; and  D  o  is the offspring disease status. 
The regression coefficient  � G   i   

 o 
   !   E      measures how environment 

modifies the genetic imprinting effect. By testing the regression 
coefficient � G   i   

 o 
   !   E   equal to zero or not using a likelihood ratio test 

with 1 degree of freedom, we could test the corresponding inter-
actions. We will compare tests assuming the maternal or paternal 
imprinting genetic models to the test assuming the Mendelian 
dominant genetic model (coding  G  o  = 1 for offspring genotypes 
AA and Aa,  G  o  = 0 for offspring genotypes aa). We propose to use 
the cross-validation procedure that minimizes the prediction er-
rors to choose the best genetic model among the maternal im-
printing model, the paternal imprinting model, and the dominant 
model. More specifically, for the purpose of training and testing, 
we will perform 10-fold cross-validation, splitting the mother-
offspring pair samples into 10 sets of approximately equal size. We 
then calculate the prediction error of the disease status for each 
offspring. Note that the model proposed can be readily adapted 

Table 1.  Joint probabilities of mother-offspring pair genotypes

O ffspring genotype

AA Aa aa 

Maternal genotype
AA p3 p2(1 – p) 0
Aa p2(1 – p) p(1 – p) p(1 – p)2

Aa 0 p(1 – p)2 (1 – p)3

p i s the minor allele frequency.

Table 2.  Offspring parent-of-origin information

a For mother-offspring pairs

O ffspring genotype

AA Aa aa

Maternal genotype
AA AmAf Amaf

Aa AmAf Amaf / Afam amaf

aa Afam amaf

b For parent-offspring trios

Offspring genotype

AA Aa aa

Maternal genotype ! paternal genotype
AA ! AA AmAf

AA ! Aa AmAf Amaf

AA ! aa Amaf

Aa ! AA AmAf Afam

Aa ! Aa AmAf Amaf / Afam amaf

Aa ! aa Amaf amaf

aa ! AA Afam

aa ! Aa Afam amaf

aa ! aa amaf

Bla nks are not applicable.

Table 3.  Maternal imprinting coding and paternal imprinting 
coding for offspring genotypes

Imprinting coding O ffspring imprinted genotype

AmA f Amaf Afam amaf

Maternal 1 0 1 0
Paternal 1 1 0 0
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for detection of main imprinting effects or interactions between 
imprinted genes using mother-offspring pairs. 

 In simulation settings with different parameter sets, the inter-
cept  �  0  is not a free parameter, but is determined by the popula-
tion prevalence of the studied outcome in the offspring cohort, 
 pD  o . This approach is similar to the procedure used in our previ-
ous work on gene-gene and gene-environment interactions  [22–
24] . With a prefixed population prevalence, we can obtain  �  0  by 
solving the following equation: 

, , ,

, , ,

Population prevalence of offspring in a certain age range

Pr 1 Pr 1 , , , Pr , , ,

Pr 1 , , , Pr , Pr , Pr ,

p m o

p m o

o

o o p m o p m o
G G G E

o o p m o p m p m
G G G E

pD
D D |G G G E G G G E

D |G G G E G |G G G G E

 where  G  p ,  G  m , and  G  o  are the genotypes of father, mother and off-
spring;  D  o  is the offspring disease status; and  E  is the environmen-
tal exposure status of the offspring. The same logistic model is 
used to model offspring penetrance Pr( D  o  = 1  �   G  o ,  G  p ,  G  m ,  E ) with 
imprinting effects. 

 Simulation Studies: Type I Error and Power 
 Here, using simulations with a wide range of parameter set-

tings, we compared the performance of the proposed imprinting 
tests to that of the test assuming the Mendelian dominant genet-
ic model. To simplify the presentation, we denote the proposed 
maternal imprinting test (i.e. using the maternal imprinting cod-
ing) with partially recovered parent-of-origin information for 
ambiguous pairs as mPair, and the corresponding paternal im-
printing test as pPair. For the imprinting tests omitting ambigu-
ous mother-offspring pairs, we denote the maternal imprinting 
test as mPair.sub and the paternal imprinting test as pPair.sub. 
For the test assuming the Mendelian dominant model, we denote 
it as Dom. As a comparison, in all simulation settings, we compare 
the performance of the proposed imprinting tests to detect igene-
environment interactions with mother-offspring pairs to that of 
the test with parent-offspring trios (we denote the maternal im-
printing test as mTrio and the paternal imprinting test as pTrio).

  Simulation Parameters 
 To evaluate type I error rates and power, the total sample size 

was fixed at  N  = 1,000 mother-offspring pairs. The frequency of 
the environmental exposure was set at 0.2. Population prevalence 
was set at two different levels,  pD  o  = 10 and 20%. We also consid-
ered different minor allele frequencies (MAF),  p  = 0.2, 0.3, and 
0.4. The main offspring imprinting effect and the main environ-
mental exposure effect were fixed at OR G  i   

 o 
     = 1.5 and  OR  E  = 2.0, 

respectively. Different levels of the offspring igene-environment 
interaction effects were considered,  OR    G  i   

 o 
   !   E      = 1.0, 1.5, 2.0, 3.0, 

4.0.

  Simulation Setup 
 Each simulated study consisted of  N  mother-offspring pairs. 

We first simulated  N  maternal genotypes and paternal genotypes 
based on the population allele frequencies and the assumptions of 
HWE and random mating. We then generated offspring geno-
types based on Mendelian transmission and simulated parental 
genotypes. When conducting tests involving mother-offspring 
pairs, paternal genotypes were discarded. Environmental expo-
sures of offspring were generated based on a binomial distribution 

with pre-specified proportions of exposure. Under our selected 
parameter settings, for a mother-offspring pair, two sets of off-
spring outcome status were generated, either based on the off-
spring penetrance when the true underlying genetic model is ma-
ternal imprinting Pr( D  o  = 1   �    G  i om    ,  E ) or based on the offspring 
penetrance when the true underlying genetic model is paternal 
imprinting Pr( D  o  = 1  �   G  io

 p    ,  E ). The tests of interest (the proposed 
imprinting tests and the test assuming the Mendelian dominant 
genetic model) were performed using the simulated data and the 
procedures were repeated 1,000 times to evaluate type I error rates 
and power.

  To evaluate the type I error rates of the proposed imprinting 
tests, data were generated under the null hypothesis of no interac-
tion between imprinted genes and environmental exposure,  H  0 : 
  � G   i   

 o 
   !   E   = 0, i.e.  H  0 : OR G  i   

 o 
   !   E    = 1. Type I error rates of the tests of 

interest were estimated by the proportion of times that the null 
hypothesis of no interaction between genetic polymorphisms and 
the environmental exposure was rejected.

  Results 

 Type I Error 
  Table 4  displays the type I error rates to detect gene-

environment interactions with the proposed imprinting 
tests and the test assuming the Mendelian dominant ge-
netic model when the true underlying disease model is 
either the maternal imprinting genetic model or the pa-
ternal imprinting genetic model. We considered different 
MAF and population prevalence. In all scenarios, the 
nominal type I error rate 0.05 was well controlled for all 
tests examined.

  Power 
  Table 5  displays power to detect gene-environment in-

teractions with different simulation parameter settings 
when the true underlying disease model is either mater-
nal imprinting or paternal imprinting. The power results 
were also plotted in  figure 1  for better visualization.  Ta-
ble 6  shows the corresponding cross-validation results.

  It is clear that when the true underlying genetic mod-
el is either maternal imprinting or paternal imprinting, 
the proposed imprinting tests using mother-offspring 
pairs that assume the correct imprinting effect consis-
tently have increased power compared to the test assum-
ing the Mendelian dominant genetic model on all sce-
narios considered ( fig. 1 ). The power improvement is big-
ger when the true underlying genetic model is maternal 
imprinting rather than paternal imprinting and the pow-
er patterns differ depending on the true disease imprint-
ing model and parameter settings.

  When the true underlying disease model is maternal 
imprinting and the imprinting tests agree with the true 
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model, tests using mother-offspring pairs have similar 
power to tests using parent-offspring trios when MAF is 
small. More specifically, compared to the mTrio test, the 
power loss of the mPair and mPair.sub tests is only about 
1–2%. For example, when population prevalence is 20%, 
environmental exposure is 20%, MAF is 0.2, and the true 
underlying disease model is maternal imprinting, to de-
tect an interaction of  OR    G  i   

 o 
   !  E  = 3, mTrio test gives 62% 

power, mPair test gives 59% power, mPair.sub test gives 
60% power, while Dom test gives only 39% power. When 
MAF is 0.4, the power loss increases to about 10–20% of 
the power of the mTrio test. For example, when popula-
tion prevalence is 10%, environmental exposure is 20%, 
and MAF is 0.4, to detect an interaction of  OR    G  i   

 o 
   !   E    = 3, 

mTrio test gives 41% power, mPair test gives 34% power, 
mPair.sub test gives 36% power, while Dom test gives 
only 19% power. This is expected as the percentage of het-
erozygous mother-offspring pairs increases as MAF in-
creases. The power difference between the mPair test 
with partially recovered parent-of-origin information for 
heterozygous mother-offspring pairs and the mPair.sub 
test omitting such pairs can almost be neglected in all 
scenarios, with the mPair.sub test actually having slight-
ly higher power than the mPair test when MAF is large. 
This is also expected because when MAF is large, the per-

centage of heterozygous paternal genotype is also large 
among those heterozygous mother-offspring pairs. Thus 
not much parent-of-origin information can be recovered 
and at the same time, some misclassification is possible 
( table 5  and  fig. 1 ).

  Cross-validation results suggest that among the 1,000 
simulations, the majority of time the correct genetic 
model was chosen ( table 6 ).  Table 6  displays the number 
of times a model was chosen because of having the small-
est mean prediction errors among the 5 models out of the 
1,000 simulations. As expected, the correctly chosen per-
centage increases as the effect size of the igene-environ-
ment interaction increases. However, caution needs to be 
taken with applying the proposed method to detect inter-
actions between the paternal imprinting effect and envi-
ronment when the igene-environment interaction effect 
is small and MAF is low. For example, when population 
prevalence is 10%, MAF is 0.2, OR   G  i   

 o 
   !  E  = 1.5, and the 

underlying genetic model is paternal imprinting, 47.6% of 
the simulations chose the wrong genetic model. When 
the effect of the igene-environment interaction is modest 
to large, more than 90% of the simulations chose the cor-
rect genetic model to detect interactions between the ma-
ternal imprinting effect and environment. We also notice 
that in all simulation scenarios considered, the cross-val-

Table 4. T ype I error rates to detect gene-environment interactions at the 0.05 significance level with the proposed imprinting tests 
and the test assuming the Mendelian dominant genetic model when the underlying true genetic model is either maternal imprinting 
or paternal imprinting

Pop.
prev.

MAF True disease
model

mTrio pTrio mPair pPair mPair.sub pPair.sub Dom

0.1 0.2 Im 0.047 0.038 0.046 0.032 0.051 0.023 0.047
Ip 0.028 0.047 0.029 0.038 0.021 0.025 0.035

0.3 Im 0.052 0.048 0.047 0.049 0.045 0.028 0.058
Ip 0.037 0.042 0.046 0.033 0.047 0.037 0.044

0.4 Im 0.039 0.047 0.040 0.041 0.035 0.046 0.041
Ip 0.051 0.051 0.050 0.057 0.050 0.059 0.047

0.2 0.2 Im 0.049 0.049 0.049 0.041 0.050 0.025 0.056
Ip 0.036 0.045 0.033 0.039 0.033 0.038 0.047

0.3 Im 0.044 0.045 0.051 0.062 0.050 0.045 0.058
Ip 0.053 0.051 0.051 0.052 0.054 0.055 0.048

0.4 Im 0.044 0.037 0.045 0.038 0.043 0.040 0.041
Ip 0.046 0.044 0.049 0.054 0.046 0.046 0.046

P op. prev. (population prevalence) was set at pDo = 0.1 and 0.2; MAF was set at 0.2, 0.3, and 0.4; and environment exposure was set 
at 20%. The total sample size was fixed at N = 1,000 mother-offspring pairs. The simulation procedure was repeated 1,000 times.

Im = Scenarios when the underlying true disease model is maternal imprinting; Ip = scenarios when the underlying true disease 
model is paternal imprinting.
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Table 5.  Power to detect gene-environment interactions

Pop.
prev.

MAF True disease
model

igene-environment
interaction

mTrio pTrio mPair pPair mPair.sub pPair.sub Dom

0.1 0.2 Im ORG  i   
 o 
   m!  E = 4.0 0.603 0.036 0.587 0.048 0.589 0.049 0.405

ORG  i   
 o 
   m!  E = 3.0 0.440 0.041 0.424 0.047 0.427 0.050 0.287

ORG  i   
 o 
   m!  E = 2.0 0.218 0.044 0.207 0.048 0.208 0.040 0.141

ORG  i   
 o 
   m!  E = 1.5 0.108 0.045 0.103 0.041 0.104 0.026 0.084

Ip ORG  i   
 o 
   m!  E = 4.0 0.038 0.596 0.046 0.513 0.076 0.316 0.385

ORG  i   
 o 
   m!  E = 3.0 0.041 0.428 0.040 0.357 0.063 0.210 0.262

ORG  i   
 o 
   m!  E = 2.0 0.046 0.210 0.037 0.177 0.046 0.109 0.124

ORG  i   
 o 
   m!  E = 1.5 0.035 0.118 0.034 0.097 0.036 0.060 0.075

0.3 Im ORG  i   
 o 
   m!  E = 4.0 0.610 0.042 0.551 0.062 0.556 0.070 0.384

ORG  i   
 o 
   m!  E = 3.0 0.450 0.041 0.411 0.057 0.416 0.060 0.276

ORG  i   
 o 
   m!  E = 2.0 0.237 0.045 0.203 0.054 0.222 0.049 0.135

ORG  i   
 o 
   m!  E = 1.5 0.104 0.045 0.093 0.042 0.097 0.036 0.080

Ip ORG  i   
 o 
   m!  E = 4.0 0.045 0.618 0.079 0.525 0.102 0.479 0.386

ORG  i   
 o 
   m!  E = 3.0 0.049 0.456 0.067 0.389 0.079 0.366 0.257

ORG  i   
 o 
   m!  E = 2.0 0.039 0.252 0.049 0.202 0.055 0.165 0.119

ORG  i   
 o 
   m!  E = 1.5 0.041 0.125 0.043 0.101 0.045 0.095 0.069

0.4 Im ORG  i   
 o 
   m!  E = 4.0 0.562 0.061 0.468 0.078 0.493 0.087 0.276

ORG  i   
 o 
   m!  E = 3.0 0.412 0.060 0.339 0.074 0.358 0.081 0.194

ORG  i   
 o 
   m!  E = 2.0 0.209 0.053 0.182 0.046 0.183 0.057 0.093

ORG  i   
 o 
   m!  E = 1.5 0.094 0.049 0.098 0.050 0.095 0.058 0.059

Ip ORG  i   
 o 
   m!  E = 4.0 0.053 0.564 0.089 0.484 0.090 0.503 0.274

ORG  i   
 o 
   m!  E = 3.0 0.052 0.433 0.075 0.352 0.071 0.371 0.199

ORG  i   
 o 
   m!  E = 2.0 0.051 0.229 0.066 0.181 0.057 0.192 0.102

ORG  i   
 o 
   m!  E = 1.5 0.061 0.101 0.060 0.103 0.054 0.103 0.064

0.2 0.2 Im ORG  i   
 o 
   m!  E = 4.0 0.818 0.053 0.793 0.062 0.797 0.115 0.540

ORG  i   
 o 
   m!  E = 3.0 0.622 0.052 0.593 0.057 0.604 0.084 0.389

ORG  i   
 o 
   m!  E = 2.0 0.323 0.054 0.295 0.041 0.303 0.057 0.192

ORG  i   
 o 
   m!  E = 1.5 0.154 0.052 0.136 0.042 0.143 0.043 0.089

Ip ORG  i   
 o 
   m!  E = 4.0 0.056 0.800 0.064 0.714 0.095 0.530 0.525

ORG  i   
 o 
   m!  E = 3.0 0.047 0.632 0.060 0.545 0.074 0.378 0.370

ORG  i   
 o 
   m!  E = 2.0 0.044 0.322 0.049 0.266 0.056 0.195 0.173

ORG  i   
 o 
   m!  E = 1.5 0.039 0.137 0.038 0.123 0.046 0.088 0.086

0.3 Im ORG  i   
 o 
   m!  E = 4.0 0.849 0.058 0.811 0.099 0.823 0.134 0.579

ORG  i   
 o 
   m!  E = 3.0 0.684 0.054 0.619 0.079 0.648 0.105 0.400

ORG  i   
 o 
   m!  E = 2.0 0.356 0.055 0.317 0.061 0.324 0.073 0.192

ORG  i   
 o 
   m!  E = 1.5 0.151 0.057 0.139 0.068 0.150 0.055 0.098

Ip ORG  i   
 o 
   m!  E = 4.0 0.065 0.852 0.102 0.764 0.144 0.728 0.595

ORG  i   
 o 
   m!  E = 3.0 0.060 0.686 0.088 0.600 0.109 0.544 0.416

ORG  i   
 o 
   m!  E = 2.0 0.055 0.382 0.056 0.304 0.072 0.293 0.205

ORG  i   
 o 
   m!  E = 1.5 0.053 0.168 0.063 0.131 0.061 0.123 0.095

0.4 Im ORG  i   
 o 
   m!  E = 4.0 0.859 0.064 0.774 0.123 0.808 0.140 0.536

ORG  i   
 o 
   m!  E = 3.0 0.682 0.049 0.595 0.103 0.639 0.114 0.383

ORG  i   
 o 
   m!  E = 2.0 0.341 0.050 0.296 0.060 0.315 0.072 0.185

ORG  i   
 o 
   m!  E = 1.5 0.140 0.049 0.104 0.050 0.119 0.052 0.083

Ip ORG  i   
 o 
   m!  E = 4.0 0.061 0.862 0.137 0.791 0.138 0.796 0.543

ORG  i   
 o 
   m!  E = 3.0 0.055 0.700 0.115 0.607 0.107 0.620 0.378

ORG  i   
 o 
   m!  E = 2.0 0.052 0.367 0.078 0.304 0.079 0.311 0.185

ORG  i   
 o 
   m!  E = 1.5 0.055 0.158 0.062 0.143 0.057 0.153 0.093

P op. prev. (population prevalence) was set at pDo = 0.1 and 0.2; MAF was set at 0.2, 0.3, and 0.4; and environment exposure was set 
at 20%. The total sample size was fixed at N = 1,000 mother-offspring pairs. The simulation procedure was repeated 1,000 times.

Im = Scenarios when the underlying true disease model is maternal imprinting; Ip = scenarios when the underlying true disease 
model is paternal imprinting.
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idation procedures did not choose the dominant genetic 
model a single time; neither did they choose the imprint-
ing methods with partially recovered parent-of-origin in-
formation. The reason that the mPair and pPair tests were 
not chosen might be due to the possible misclassification 
in recovered parent-of-origin information, which may 
lead to bigger prediction errors. Moreover, because the 
mean prediction errors of all tests are very small and close 
to each other, small increases in the individual prediction 
errors of those heterozygous offspring with heterozygous 
mothers may result in a much more prominent change in 
rankings of the 5 mean prediction errors.

  When the true underlying disease model is paternal 
imprinting and the imprinting tests agree with the true 
model, the proposed pPair and pPair.sub tests with moth-
er-offspring pairs lose about 20% of the power of the 
pTrio test with parent-offspring trios in all scenarios con-
sidered. As no paternal genotype information is available 
for mother-offspring pairs, it is expected that pPair or 
pPair.sub tests under the parental imprinting model 
would have lower power than that of mPair or mPair.sub 
tests under the maternal imprinting model. Comparisons 
between the power of the pPair test and the pPair.sub test 
suggests that partially recovering parent-of-origin infor-
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  Fig. 1.  Power to detect gene-environment interactions with the 
proposed imprinting tests and the test assuming the Mendelian 
dominant genetic model when the underlying true disease model 
is either maternal imprinting ( a ) or paternal imprinting ( b ). MAF 

was set at 0.2, 0.3, and 0.4; population prevalence (pop. prev.) was 
set at  pD  o  = 10 and 20%; environmental exposure was set at 20%; 
and the effects of gene-environment interactions were ranging 
from odds ratio (OR) 1.5 to 4.0.   
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Table 6.  Cross-validation results to detect gene-environment interactions

Pop.
prev.

MAF True disease
model

igene-environment
interaction

mPair pPair mPair.sub pPair.sub Dom

0.1 0.2 Im ORG  i   
 o 
   m!  E = 4.0 0 0 950 50 0

ORG  i   
 o 
   m!  E = 3.0 0 0 923 77 0

ORG  i   
 o 
   m!  E = 2.0 0 0 820 180 0

ORG  i   
 o 
   m!  E = 1.5 0 0 717 283 0

Ip ORG  i   
 o 
   m!  E = 4.0 0 0 210 790 0

ORG  i   
 o 
   m!  E = 3.0 0 0 305 695 0

ORG  i   
 o 
   m!  E = 2.0 0 0 428 572 0

ORG  i   
 o 
   m!  E = 1.5 0 0 476 524 0

0.3 Im ORG  i   
 o 
   m!  E = 4.0 0 0 979 21 0

ORG  i   
 o 
   m!  E = 3.0 0 0 945 55 0

ORG  i   
 o 
   m!  E = 2.0 0 0 829 171 0

ORG  i   
 o 
   m!  E = 1.5 0 0 715 285 0

Ip ORG  i   
 o 
   m!  E = 4.0 0 0 80 920 0

ORG  i   
 o 
   m!  E = 3.0 0 0 137 863 0

ORG  i   
 o 
   m!  E = 2.0 0 0 257 743 0

ORG  i   
 o 
   m!  E = 1.5 0 0 358 642 0

0.4 Im ORG  i   
 o 
   m!  E = 4.0 0 0 966 34 0

ORG  i   
 o 
   m!  E = 3.0 0 0 933 67 0

ORG  i   
 o 
   m!  E = 2.0 0 0 844 156 0

ORG  i   
 o 
   m!  E = 1.5 0 0 763 237 0

Ip ORG  i   
 o 
   m!  E = 4.0 0 0 38 962 0

ORG  i   
 o 
   m!  E = 3.0 0 0 74 926 0

ORG  i   
 o 
   m!  E = 2.0 0 0 166 834 0

ORG  i   
 o 
   m!  E = 1.5 0 0 250 750 0 

0. 2 0.2 Im ORG  i   
 o 
   m!  E = 4.0 0 0 986 14 0

ORG  i   
 o 
   m!  E = 3.0 0 0 976 24 0

ORG  i   
 o 
   m!  E = 2.0 0 0 909 91 0

ORG  i   
 o 
   m!  E = 1.5 0 0 811 189 0

Ip ORG  i   
 o 
   m!  E = 4.0 0 0 72 928 0

ORG  i   
 o 
   m!  E = 3.0 0 0 126 874 0

ORG  i   
 o 
   m!  E = 2.0 0 0 234 766 0

ORG  i   
 o 
   m!  E = 1.5 0 0 318 682 0

0.3 Im ORG  i   
 o 
   m!  E = 4.0 0 0 996 4 0

ORG  i   
 o 
   m!  E = 3.0 0 0 987 13 0

ORG  i   
 o 
   m!  E = 2.0 0 0 933 67 0

ORG  i   
 o 
   m!  E = 1.5 0 0 859 141 0

Ip ORG  i   
 o 
   m!  E = 4.0 0 0 15 985 0

ORG  i   
 o 
   m!  E = 3.0 0 0 54 946 0

ORG  i   
 o 
   m!  E = 2.0 0 0 139 861 0

ORG  i   
 o 
   m!  E = 1.5 0 0 238 762 0

0.4 Im ORG  i   
 o 
   m!  E = 4.0 0 0 994 6 0

ORG  i   
 o 
   m!  E = 3.0 0 0 983 17 0

ORG  i   
 o 
   m!  E = 2.0 0 0 937 83 0

ORG  i   
 o 
   m!  E = 1.5 0 0 879 121 0

Ip ORG  i   
 o 
   m!  E = 4.0 0 0 4 996 0

ORG  i   
 o 
   m!  E = 3.0 0 0 12 987 0

ORG  i   
 o 
   m!  E = 2.0 0 0 63 937 0

ORG  i   
 o 
   m!  E = 1.5 0 0 130 870 0

Pop . prev. (population prevalence) was set at pDo = 0.1 and 0.2; MAF was set at 0.2, 0.3, and 0.4; and environment exposure was set 
at 20%. The total sample size was fixed at N = 1,000 mother-offspring pairs. The simulation procedure was repeated 1,000 times.

Im = Scenarios when the underlying true disease model is maternal imprinting; Ip = scenarios when the underlying true disease 
model is paternal imprinting.
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mation can improve power when MAF is small ( table 5  
and  fig. 1 ). We observed similar patterns of the results 
from the cross-validation procedures, although the per-
centage of choosing the correct genetic model is not as 
high as in cases when the underlying true genetic model 
is maternal imprinting ( table 6 ).

  When the imprinting tests do not agree with the true 
underlying imprinting model, i.e. when the true underly-
ing disease model is maternal imprinting but the im-
printing tests assume paternal imprinting or vise versa, 
no imprinting tests (m/pTrio, m/pPair, and m/pPair.sub) 
have any power. However, the test assuming the Mende-
lian dominant genetic model has some power ( table 5 ).

  We also conducted simulation studies with other fre-
quencies of the environmental exposure such as 30 and 
40%. Similar patterns in power results and cross-valida-
tion results are observed (data not shown).

  Real Data Application 
 The proposed method was applied to detect gene-en-

vironment interactions in childhood asthma using the 
mother-offspring pair data from the birth cohort study 
currently being conducted by CCCEH in New York City. 
Eligible pregnant women entered the study at the begin-
ning stage of their pregnancy.

  During the 2nd or 3rd trimesters, the women carried a 
backpack containing a portable personal exposure air 
monitor during the day and kept it near the bed at night 
during a consecutive 48-hour period for polycyclic aro-
matic hydrocarbons (PAH) measurements, a widespread 
class of combustion-related pollutants commonly found in 
the air, food, and drinking water  [25] . PAH bind covalent-
ly to DNA to form PAH-DNA adducts, a widely used indi-
cator of DNA damage that has been associated with cancer 
 [26–29] . Higher levels of cord PAH-DNA adducts have 
been associated with reduced scores on neurocognitive 
tests, alone or in combination of environmental tobacco 
smoke  [30–32] . PAH-DNA adduct levels were measured in 
umbilical cord blood collected during delivery  [33]  using 
the method of Alexandrov et al.  [34] , which has a coeffi-
cient of variation of 12% and a lower limit of detection of 
0.25 adducts per 10 8  nucleotides. Here we treated PAH-
DNA adducts as a biomarker of exposure of PAH. Adducts 
were dichotomized into detectable/non-detectable, with 
the non-detectable rate being 30% in this cohort.

  Childhood asthma was measured using a parental re-
port of doctor-diagnosed asthma according to the vali-
dated Brief Respiratory Questionnaire  [35]  during a fol-
low-up visit when the children were between 5 to 6 years 
old. As this is an ongoing study and not all children had 

turned 5 or 6, we use this data set to illustrate the feasibil-
ity and power of the proposed imprinting tests. In this 
subset, about 30% of the children have doctor-diagnosed 
asthma status at ages 5 or 6.

  We selected 22 common genetic polymorphisms from 
candidate genes that play important roles in the metabolic 
activation and detoxification of PAH, and from candidate 
genes that are known to be related to the allergic immune 
system ( table 7 ). None of the 22 SNPs tested are on the re-
gions known to be imprinted for asthma. No multiple 
comparison adjustment was conducted as the purpose of 
the real data application is to demonstrate the feasibility 
and power of the proposed imprinting tests. Findings from 
this real data application need to be replicated with an in-
dependent study. The data set consists of 171 mother-off-
spring pairs that have a complete report of childhood asth-
ma status and cord adduct levels. The actual sample size 
used for each test at each marker differs, as we observed 
different numbers of mother-offspring pairs with both 
heterozygous genotypes at different markers.

   Table 8  presents the p values for gene-environment in-
teractions of the 22 markers using both the proposed im-
printing tests and the test assuming the Mendelian domi-
nant model. p values  ! 0.1 are highlighted (in bold). Also 
displayed are results from the 5-fold cross-validation pro-
cedures at those significant markers, where the test with 
the smallest mean prediction errors among the 5 is indi-
cated. Four markers,  CYP1A1-78 ,  CYP1B1-05 ,  CYP1B1-06 , 
and  IL13-01 , significantly interact with the environmen-
tal exposure at the 0.1 significance level with the pro-
posed imprinting tests. No significance was observed at 
these four markers with the test assuming the Mendelian 
dominant genetic model. Two markers,  CYP1A1-14  and 
 CYP1A1-15 , were observed to interact with the environ-
mental exposure at the 0.1 significance level with both im-
printing tests and the test assuming the dominant genetic 
model. However, marker  IL4R-06  has a p value of 0.09, as-
suming the dominant model, but the p values are all above 
0.1 with tests assuming imprinting genetic models.

  In terms of the cross-validation results, in the majority 
of cases, tests or category of tests (i.e. mPair and mPair.sub 
tests as one category, or pPair and pPair.sub tests as one 
category) that have the smallest mean prediction errors 
from the cross-validation procedures also have the small-
est p values. Another observation from the cross-valida-
tion results is that tests omitting mother-offspring pairs 
both with heterozygous genotypes tend to have smaller 
prediction errors than tests using partially recovered par-
ent-of-origin information, consistent with the simulation 
results. Again, this is probably due to the possibility of 
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misclassifying imprinting information, although both 
tests preserve the correct type I error rates. For example, 
at markers  CYP1B1-05  and  CYP1B1-06 , mPair.sub test has 
the smallest prediction errors among all 5 tests, mPair.sub 
test has the smallest p values, 0.071 and 0.091, respective-
ly. Another example, at marker  CYP1A1-78 , pPair.sub test 
has the smallest prediction error among all 5 tests, and 
pPair test has the smallest p value of 0.098, that is slight-
ly more significant than pPair.sub (second smallest p val-
ue = 0.111). We also note that for some markers, cross-
validation results do not match with the p value results. 
For example, at marker  IL13-01 , mPair.sub test has the 
smallest prediction error among all 5 tests, but pPair test 
has the smallest p value of 0.042. This observation might 
be due to the small sample size, thus parameter estimates 
have a big variance in the cross-validation procedures.

  Our simulation studies with a much larger sample size 
have suggested that the cross-validation procedures 
picked the correct genetic model most of the time in all 
parameter scenarios examined ( table  6 ), although the 

second way of dealing with the heterozygous mother-
offspring pairs (simply omitting them) is always pre-
ferred.

  Discussion 

 In this study, we proposed an imprinting test with a 
newly proposed imprinting coding to detect interactions 
between environmental exposures and imprinted genes 
using mother-offspring pairs. Through extensive simula-
tion studies, we showed that the birth cohort design with 
mother-offspring pairs is an efficient design for testing 
the interactions between imprinted genes and environ-
mental exposures.

  We observed that with mother-offspring pairs, the 
parent-of-origin information of each offspring can still 
be fully determined, except for the cases when both 
mother and offspring genotypes are heterozygous. In 
such a case, offspring imprinted genotypes can be either 

Table 7.  Chromosomal positions and gene locations of the 22 markers from the selected candidate genes

Gene SNP SNP rs number Alleles Chromosome Position, bp

CYP1A1 CYP1A1-78 rs2198843 C/G 15 72,788,283
CYP1A1-109 rs1456432 A/G 15 72,790,104
CYP1A1-15 rs4646421 T/C 15 72,803,245
CYP1A1-14 rs2606345 T/G 15 72,804,229
CYP1A1-81 rs2472299 C/T 15 72,820,453

CYP1A2 CYP1A203 rs762551 A/C 15 72,828,970
CYP1A212 rs2472304 A/G 15 72,831,291
CYP1A252 rs4886406 A/C 15 72,844,256

CYP1B1 CYP1B1-66 rs162549 T/A 2 38,148,960
CYP1B1-06 rs1056837 T/C 2 38,151,654
CYP1B1-05 rs1056836 G/C 2 38,151,707
CYP1B1-74 rs162560 A/G 2 38,153,019
CYP1B1-04 rs10012 C/G 2 38,155,894
CYP1B1-03 rs2617266 C/T 2 38,156,048

IL13 IL1301 rs20541 T/C 5 132,023,863
IL1303 rs1800925 T/C 5 132,020,708

IL4 IL403 rs2070874 T/C 5 132,037,609
IL408 rs2243251 G/A 5 132,037,686
IL410 rs2243290 A/C 5 132,046,068

IL4R IL4R01 rs1805010 A/G 16 27,263,704
IL4R05 rs1805015 C/T 16 27,281,681
IL4R06 rs1801275 A/G 16 27,281,901
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A m a f  or A f a m , i.e. the parent-of-origin information is am-
biguous. We proposed two ways to deal with such am-
biguous pairs, partially recovering parent-of-origin in-
formation or omitting such mother-offspring pairs, and 
compared their performance. The proposed imprinting 
tests mPair/pPair, and mPair.sub/pPair.sub, from both 
ways, respectively, correctly preserved the type I error 
rate, with the first way that partially recovers the parent-
of-origin information being slightly more powerful in 
some scenarios. However, the second way of dealing with 
the heterozygous mother-offspring pairs (simply omit-
ting them) is always preferred by the cross-validation 
procedures, as it leads to smaller mean prediction errors 
in all simulation scenarios. This might be due to the pos-
sibilities of misclassifying imprinting information when 
partially recovering parent-of-origin information. Thus, 
in real data analyses, we may simply omit heterozygous 
mother-offspring pairs.

  The simulation results demonstrated the feasibility 
and power of the proposed imprinting tests over the test 

that assumes the Mendelian dominant genetic model. 
When the true underlying genetic model is either mater-
nal imprinting or paternal imprinting, the proposed im-
printing tests with mother-offspring pairs that assume 
the correct imprinting effect consistently have much 
higher power than the test assuming the Mendelian dom-
inant genetic model. The power improvement is bigger 
when the true underlying genetic model is maternal im-
printing rather than paternal imprinting. Also, when the 
true underlying disease model is maternal imprinting 
and the imprinting tests agree with the true model, im-
printing tests using mother-offspring pairs has similar 
power to those using parent-offspring trios. When the 
true underlying disease model is paternal imprinting and 
the imprinting tests agree with the true model, imprint-
ing tests using mother-offspring pairs lose about 20% of 
the power of the tests using parent-offspring trios.

  In the application of our proposed methods to the 
questionnaire data on clinical childhood asthma, we suc-
cessfully identified four markers that significantly inter-

Table 8. p  value results of the interaction effects at 22 candidate markers with the proposed imprinting tests and the test based on the 
dominant genetic model

Marker Proposed imprinting tests Test assuming
dominant model

CV

mPair mPair.sub pPair pPair.sub

CYP1A1109 0.296 0.412 0.452 0.153 0.273
CYP1A114 0.002 0.035 0.032 0.006 0.003 pPair.sub
CYP1A115 0.063 0.083 0.173 0.121 0.079 mPair.sub
CYP1A178 0.578 0.228 0.098 0.111 0.143 pPair.sub
CYP1A181 0.157 0.186 0.386 0.671 0.821
CYP1A203 0.197 0.121 0.904 0.746 0.972
CYP1A212 0.145 0.149 0.781 0.865 0.275
CYP1A252 0.462 0.221 0.202 0.277 0.240
CYP1B103 0.520 0.767 0.425 0.649 0.787
CYP1B104 0.656 0.929 0.980 0.241 0.947
CYP1B105 0.071 0.071 0.512 0.330 0.150 mPair.sub
CYP1B106 0.132 0.091 0.629 0.476 0.284 mPair.sub
CYP1B166 0.521 0.498 0.259 0.136 0.636
CYP1B174 0.476 0.467 0.891 0.222 0.757
IL1301 0.888 0.926 0.042 0.988 0.865 mPair.sub
IL1303 0.711 0.878 0.833 0.553 0.742
IL403 0.462 0.616 0.483 0.152 0.924
IL408 0.312 0.351 0.575 0.991 0.698
IL410 0.498 0.422 0.318 0.236 0.569
IL4R01 0.567 0.459 0.190 0.960 0.398
IL4R05 0.879 0.934 0.161 0.850 0.378
IL4R06 0.812 0.625 0.890 0.853 0.090 mPair.sub

Fo r better visualization, only cross-validation (CV) results for those markers with p values <0.1 are displayed: the test with the 
smallest mean prediction errors among the 5 tests from the 5-fold CV procedures.
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act with the environmental exposure at the 0.1 signifi-
cance level. In the majority of cases, tests or category of 
tests that have the smallest mean prediction errors from 
the cross-validation procedures also have the smallest p 
values. In this study, we concentrated only on the interac-
tions between a single marker and an environmental ex-
posure. Although both our simulation studies and the 
real data application suggested that omitting mother-off-
spring pairs with both heterozygous genotypes might be 
more preferred than partially recovering parent-of-ori-
gin information for such pairs, we may be able to recover 
better parent-of-origin information for mother-offspring 
pairs with both heterozygous genotypes if we could bor-
row parent-of-origin information from adjacent markers. 
We plan to explore this further as our future project.
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